86 research outputs found

    Impact on floating membranes

    Full text link
    When impacted by a rigid object, a thin elastic membrane with negligible bending rigidity floating on a liquid pool deforms. Two axisymmetric waves radiating from the impact point propagate. In the first place, a longitudinal wave front -- associated with in-plane deformation of the membrane and traveling at constant speed -- separates an outward stress free domain with a stretched but flat domain. Then, in the stretched domain a dispersive transverse wave travels at a wave speed that depends on the local stretching rate. We study the dynamics of this fluid-body system and we show that the wave dynamics is similar to the capillary waves that propagate at a liquid-gas interface but with a surface tension coefficient that depends on impact speed. We emphasize the role of the stretching in the membrane in the wave dynamics but also in the development of a buckling instability that give rise to radial wrinkles

    Rayleigh-B\'enard convection with a melting boundary

    Get PDF
    We study the evolution of a melting front between the solid and liquid phases of a pure incompressible material where fluid motions are driven by unstable temperature gradients. In a plane layer geometry, this can be seen as classical Rayleigh-B\'enard convection where the upper solid boundary is allowed to melt due to the heat flux brought by the fluid underneath. This free-boundary problem is studied numerically in two dimensions using a phase-field approach, classically used to study the melting and solidification of alloys, which we dynamically couple with the Navier-Stokes equations in the Boussinesq approximation. The advantage of this approach is that it requires only moderate modifications of classical numerical methods. We focus on the case where the solid is initially nearly isothermal, so that the evolution of the topography is related to the inhomogeneous heat flux from thermal convection, and does not depend on the conduction problem in the solid. From a very thin stable layer of fluid, convection cells appears as the depth -- and therefore the effective Rayleigh number of the layer increases. The continuous melting of the solid leads to dynamical transitions between different convection cell sizes and topography amplitudes. The Nusselt number can be larger than its value for a planar upper boundary, due to the feedback of the topography on the flow, which can stabilize large-scale laminar convection cells.Comment: 36 pages, 16 figure

    Curvature singularity and film-skating during drop impact

    Full text link
    We study the influence of the surrounding gas in the dynamics of drop impact on a smooth surface. We use an axisymmetric 3D model for which both the gas and the liquid are incompressible; lubrication regime applies for the gas film dynamics and the liquid viscosity is neglected. In the absence of surface tension a finite time singularity whose properties are analysed is formed and the liquid touches the solid on a circle. When surface tension is taken into account, a thin jet emerges from the zone of impact, skating above a thin gas layer. The thickness of the air film underneath this jet is always smaller than the mean free path in the gas suggesting that the liquid film eventually wets the surface. We finally suggest an aerodynamical instability mechanism for the splash.Comment: 5 figure

    Rarefied gas correction for the bubble entrapment singularity in drop impacts

    Get PDF
    We study the non-continuous correction in the dynamics of drop impact on a solid substrate. Close to impact, a thin film of gas is formed beneath the drop so that the local Knudsen number is of order one. We consider the first correction to the dynamics which consists of allowing slip of the gas along the substrate and the interface. We focus on the singular dynamics of entrapment that can be seen when surface tension and liquid viscosity can be neglected. There we show that different dynamical regimes are present that tend to lower the singularity strength. We finally suggest how these effects might be connected to the influence of the gas pressure in the impact dynamics observed in recent experiments

    The Explicit-Implicit-Null method:Removing the numerical instability of PDEs

    Get PDF
    International audienceno abstrac

    Asymptotic behaviour of the Rayleigh--Taylor instability

    Full text link
    We investigate long time numerical simulations of the inviscid Rayleigh-Taylor instability at Atwood number one using a boundary integral method. We are able to attain the asymptotic behavior for the spikes predicted by Clavin & Williams\cite{clavin} for which we give a simplified demonstration. In particular we observe that the spike's curvature evolves like t3t^3 while the overshoot in acceleration shows a good agreement with the suggested 1/t51/t^5 law. Moreover, we obtain consistent results for the prefactor coefficients of the asymptotic laws. Eventually we exhibit the self-similar behavior of the interface profile near the spike.Comment: 4 pages, 6 figure

    Bistability in Rayleigh-B\'enard convection with a melting boundary

    Full text link
    A pure and incompressible material is confined between two plates such that it is heated from below and cooled from above. When its melting temperature is comprised between these two imposed temperatures, an interface separating liquid and solid phases appears. Depending on the initial conditions, freezing or melting occurs until the interface eventually converges towards a stationary state. This evolution is studied numerically in a two-dimensional configuration using a phase-field method coupled with the Navier-Stokes equations. Varying the control parameters of the model, we exhibit two types of equilibria: diffusive and convective. In the latter case, Rayleigh-B\'enard convection in the liquid phase shapes the solid-liquid front, and a macroscopic topography is observed. A simple way of predicting these equilibrium positions is discussed and then compared with the numerical simulations. In some parameter regimes, we show that multiple equilibria can coexist depending on the initial conditions. We also demonstrate that, in this bi-stable regime, transitioning from the diffusive to the convective equilibrium is inherently a nonlinear mechanism involving finite-amplitude perturbations

    Two dimensional Leidenfrost Droplets in a Hele Shaw Cell

    Get PDF
    We experimentally and theoretically investigate the behavior of Leidenfrost droplets inserted in a Hele-Shaw cell. As a result of the confinement from the two surfaces, the droplet has the shape of a flattened disc and is thermally isolated from the surface by the two evaporating vapor layers. An analysis of the evaporation rate using simple scaling arguments is in agreement with the experimental results. Using the lubrication approximation we numerically determine the shape of the droplets as a function of its radius. We furthermore find that the droplet width tends to zero at its center when the radius reaches a critical value. This prediction is corroborated experimentally by the direct observation of the sudden transition from a flattened disc into an expending torus. Below this critical size, the droplets are also displaying capillary azimuthal oscillating modes reminiscent of a hydrodynamic instability

    Instabilité de Rayleigh–Taylor d’un film mince visqueux

    Get PDF
    Cette étude numérique concerne le développement de l'instabilité de Rayleigh-Taylor d'un film mince aux temps longs. Nous présenterons une étude de stabilité linéaire générale, ainsi que les différents régimes observés aux temps longs, en fonction des paramètres sans dimensions du problème
    • …
    corecore